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1. Introduction

This paper is about the problem of how well an infinitely differentiable function
can be approximated by polynomials. Let / be an infinitely differentiable function
on a compact interval I = R. The problem is to decide how ‘small’ the sequence
ILF%—p*% (k= 0,1,2,...) can be made by choosing suitable polynomials p. Here
% stands for the k-th derivative of f, and so we are asking about simultaneous
approximation of f and all its derivatives. It is welt known that for fixed » > 0 and
¢ > 0 we can choose p such that || f*—p®||,, < efor 0 < k < n. Thus the sequence
can be made ‘small’ in the sense that the first # terms are small.

Evidently, for any polynomial p, the k-th derivative is zero for large &, and hence
(1f% —p®||., = {Lf®I,. The numbers |if ||, will usually be very large, and we have
to bear this in mind in seeking an optimal notion of ‘small. Let M = {M,} be a
sequence of positive numbers such that M, '[|f Wit — 0. Given ¢ > 0, can we find
polynomials p such that || /%' —p*|,, < eM, for all k? ‘

We conjecture that the answer is yes, although it may, perhaps, be necessary to
impose some modest regularity conditions on M. Prior to-this, there have been some
results [3,8,11,13,19] consistent with this conjecture. Most involve major
regularity and growth restrictions on M, such as the following:

M k
fi fi 0, ——= for 0 <j < k; 1
or some fixed a > MM, a(j) or ] (1)

o (k’ 1k .
— < 4 oo, (2
kgo Mk) :

The only unrestricted result is [19] that if M1 f¥||, — Oforall A > Oask 1 o,
then there exists a sequence p, of polynomials such that

sup XM Y| f“ =gl — 0
k

as nt oo, for all 4> 0. The strongest result (communicated to the author by
H. G. Dales) assumes both (1) and (2) and states that if

i I ™l
M

k=1 k

< +a0,
then there exists a sequence of polynomials p, such that

F U0l
k=1 Mk
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as n 1 oo. We shall give a sharp result for a reasonably large class of sequences M.
We employ the notation

o Mk 1/k i Mk 1k
Mo = hir;:nnf(ﬁ) , Hye = hrPTSfp F) .

TueoreMm 1. Let ! be a compact interval, let M, > 0 for k = 0,1,2, ..., and let
{1 — C be such that M '||f®)|, - Oaskloo. Let M, = 1 for k < 0. Let ¢ > 0.

(i) If yu_ = +o¢ and for some g

[~~~

M;_ M, _; /M, is bounded (3)

j=0

then there exists a polynomial p such that M7 || [ —p™|. < ¢ for all k 2 0.

(i} Ifu. >0and u, < + oo, then there exists a polynomial p such that

M M/ PO —pWlle < e
Jor all k.

We may call case {ii) ihe analytic case, because then f extenids to an analytic
function on the u;! neighbourhood of I.

The regulatity condition (3) of the non-analytic case (i) is quite mild. It follows
from (2), with g = 2. It also follows from (1). Indeed, it follows from the much
weaker conditions that

MM, < aM,, ;. M, > bkM,

where a > 0, b > 0 and ¢ > 0 are independent of k 22 0 and j = 0.

We shall obtain an analogous result for all L, norms 1 £ p < +oc, and other
related results.

Before stating them, we remark that there are two respects in which Theorem 1 is
deeper than classical results. First, it is a Banach space theorem rather than a nuclear
space theorem. It is well known that questions about Banach spaces are more
delicate. Secondly, it concerns a bounded interval. The analogous problems on the
whole line and the circle involving approximation by entire functions and
trigonometric polynomials are not as difficult, because the group structure is
available (cf. [13]).

We proceed to define the Banach spaces of functions we shall use, and to state
our main theorem.

Let 1 £ p< o and 1 € r € oo. For a closed (possibly unbounded) interval
I ¢ R, we define the space B(I,r, p, M} as the space of all infinitely differentiable
functions f : T — C such that the sequence {[f")|, of L (I) norms belongs to the
weighted sequence space 1(M, 1), that is

o
YAMIUSMLY < 4+
k=19
ifl <r < +oo, and
sup M YIS W) < 4 oo
k
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2. What is the analogue of the Rudin—Carleson interpolation theorem for the
analytic functions on the disc, of class B up to the boundary? The corresponding
problem for the nuclear Gevrey classes has been solved [14].

3. The fact that each space B = B(I, r, p, M) is complemented in its second
dual B** suggests that B might be a dual space. Is this true? For 1 < r < oc and
1 < p < oo, Bis reflexive, and so the question really concerns the remaining cases.

2, The second dual and dominated convergence

Let M be a fixed sequence of positive numbers, let 1 < r < 0.1 € p < o0, and
let I be a closed interval. The map

fr—= i ] 9,00

imbeds B = B(l, r, p, M) isometrically in the Banach space

A= L,
=0

where the norm is the [(M, ') norm of the L, norms on I. If 1 <r < o« and
1 < p < o0, then A is reflexive, and hence so is B. Our first objective is to show that
in all cases there is an explicit norm 1 projection from B** onto B. We shall then use
this to establish a dominated convergence principle for B.

The eletmentary estimate

2
(1) SN Ul + 5 1, kel 0<a <)

shows that the linear functionals §(x): /' — f®(x} are well defined and continuous
on B. Thus, given F € B**, we may define associated functions F,: I — C by

F{x) = F(8*(x) .
(2.1} LEMMA. The linear map P: F — F, is a norm 1 projection from B** onto B.

Proof. By ‘projection’ we mean, of course, a map which inverts the natural
injection of B into B**. This injection Q is defined by (Qf)L) = Lf for I € B*, and
so evidently PQf = f.

We may assume that [—1, 1] = I, without loss of generality. Fix F e B** with
{IF|| = 1. We have to show that F,e B, and ||Fy|| € 1. Fork > O and f e B,

k __ sk (k) _ fi
’(a (x+hh) Hx)y yﬂ(x))f’ _ If (x+h]3 f®x)

_ f(k + 1)(x)

= [Ihf%*D(x+0h), forsomet.0 < 6 <1,

<RIl < RIS 20, + 1070,

< |hlmax (M, ,, M, s Hifllg:
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hence
8% (x -+ h} + 8%(x) _ s

ti
m h

{x),

where the limit is taken in the norm of B*. Since F is continuous on B*, we get
F, = F,., on I. We conclude that F® = F,, and that F, is continuous, and hence
measurable.

Let s and g be the conjugate indices to r and p, respectively.

Case 1°, in which 1 € r < oo. If ||Fylip > 1, then there exists a sequence o, € R
such that

Z(Mulaﬂ)’ = ] and %%HFka > 1.
P

We may assume that «, = O for all but a finite number of indices k. We can find
continuous functions g, € L,(I) such that |lg,dl, = 1 and

3

RN J Fogdx > 1.

k
—1

{(Consider separately the cases when 1 < p < and p = oc.) The linear functional

Lif —Tx j f¥g,dx
k
-1

is continuous on B, and has norm at most 1. Using the continuity of the g, and F we
see easily that
1

F(L) =Y o J Fg,dx.
k

—1

But this means that ||F!j exceeds 1, which is impossible. We conclude that [|Folls < 1.
Case 2°, in whichr = oo. If||Fy||3 > 1, then there exists k such that Iy > M.
1

We can find a smooth function g on I such that ||g|l, = 1 and J- Fgdx > M,. Much

-1
as before, we obtain the contradiction that ||F|| > 1. Thus ||Fjjz < 1.

This concludes the proof. For future reference, we record the formula

which holds for F € B**.

The above theorem may be viewed as a limit of the diagram

C** Y gt L L Y gFL LD

v aara

[ —=C —2 ! D (? (—-— ee e s



on B*, we get
yus, and hence

equence o, € R

;. We can find

near functional

‘he g, and F we

that ||Fylls < 1.

1t |[Fll, > M.
Ix > M,. Much
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The diagonal projection, from C**'** into C*, is defined by the same rule F — F; as
in the argument above. The image of this projection is C* n {f: f® e Lip1}.

Now we formulate and prove the dominated convergence principle.

Let f,e Bl,r,p,M),n=1,2,3,.., and let 8, 20,k =0,1,2,.... We say that
££) is (I, r, p, M)-dominated by {B,} i

(1) 1€r<owand ) (X,;L) <oo,orr=ooand~ﬂ%‘4—o0;

k=0 k k

(2) /¥, < B, for all k and n.

(2.2) LEMMA. Let [ be a closed bounded interval. Let f,, f € B, and suppose that
If0l € 1 and fi(x) = f(x) for each x € I. Then || f®— f%)||, — 0 for each k.

Proof. Let F be any weak-star accumulation point of { f,} in B*¥*. Then, with the
notation of the last proof, Fo(x) = f(x) for all x € I. Thus F(x) = f*(x), for all x.
Since F,(x) = F(6%x)), this implies that f¥®(x)—- f%(x) for each x. For
1 < p< oo, the Lebesgue dominated convergence theorem implies that
|f% — %, — 0. For p = oo, we obtain the same conclusion from the fact that
flerd o U+ D L norm.

{2.3) THEorEM. Let I be a closed bounded interval, let f,, f € B(I,r,p, M).
Suppose that f,{x) - f(x) for each xel, and {f,} is (I,r,p, M)-dominated by a
sequence {f.}. Then [, — f in the norm of B.

Proof. By the lemma, /¥ — f®in L, for each k. Given ¢ > 0, pick K such that

kzzxﬂ(%‘;) <§ (when 1 < r < o),

B, 13
S h — i
Supgp <3 (Whenr =)
Then pick N such that
sM,
ilfif"—f“"llp < 3(K—:1) (when 1 € r < 0),
L1 — ML, < oM, (when r = o)

wherever 0 < k < K and n > N. Then ||f,— flls < ¢ whenever n > N. This proves
the result.

We conclude this section by giving the corresponding theorem on the whole line
R, and an application.

{2.4) Tueorem. Let f,, f € B(R, r, p, M), and suppose that f, — [ in L, norm
and {f,} is (R, r, p, M)-dominated by a sequence {8,}. Then f, —» f in B(R,r,p, M)
norm.
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It is no longer enough to assume merely pointwise convergence. This result is
proved in the same way as the last one.

(2.5) CoroLLary. The entire functions are dense in B(R, r, p, M).
Proof. Fix [ € B(R,r, p, M). Form the convolution f, = f * ¢,, where
d)n(r) - (Znn)‘l-’2eu.\-3n.

is the Weierstrass kernel. Then ||f®, < ||f"™||, and f,— f in L(R). By the
theorem, f, — f in B norm. Clearly, £, is entire, and so we are done.

This result is the starting point of Dales’ proof of the main theorem for the
algebra B(I, 1, oo, M) in the case of M satisfying (1) and (2). In that case any € B
has an extension in B(R, 1, oc, M). By the coroilary, f s a limit of entire functions in
B(I, 1, o, M). Since entire functions act on any Banach algebra, each entire function
is a limit of polynomials in B{I, 1, «, M) norm.

3. Reductions

Let M, > 0 for ke Z, and M, = 1 for k < 0. Note that each of the conditions
{1, (2), 3 po =, po >0,y < 0, pL = is such that, if it holds for M,
* then it also holds for the sequences o* M, and N, = min {M,, M, _ 1}. Also, the map
taking f on [a, b] to the function

xXb— fia, + {(x—a,)
b, —a,

gives a linear isometry from B{[a,b],r.p, M) onto B({a,, b1, r, p.a*M,), where

b— , .

o= . This usually allows us to work with [ = [—1, 1], without loss of
14

generality.

(3.1) Lemma. The set \ ) B(l.r,p, @~ *M,) is dense in B(I,r, p, M).

a>1

Proof, Tt suffices to take J = [—1,1]. For « > 1,

dk
T f(ax)

< o ML, < -

oo

Since f(a”'x)— f(x) pointwise as « |1, the dominated convergence principle
shows that f(a™'x}— f(x)in B(l,r, p, M) norm.

{3.2) Lemma. Let N, = min{M,_,,M,}. Then B(I,r,p,N) is dense in
B(l,r,p, M).

Proof. 1t suffices to consider I = [—1,1]. We abbreviate B(I, r, p, M) to B(M).
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For 0 < & < 4, the linear operator T, defined by

X—fx+&

1
= t)dt
(TN = o J 110
maps L,(I) continuously to L,(I). To show this, it suffices, by the Marcinkiewicz

interpolation theorem, to show that T, maps L, to L and L, to L,. It is obvious
that

TSNl < S M -
As for L,, we have
1 1 1
2e J IT.f(x)dx < '[ Jx(x,t]|f(t}|dxdx,
-1 -t -1

where
1 fx—ex—g <t <x—ex+e,
X(x, C] —

0 otherwise .
Thus, by Fubini’s theorem,
Al < (1=e) Yiflly -

We conclude that for some A, > 0, [T, fil, < A4S,
Next, note that for f e B(M),

(1—g)+1

k1) 5 =
(LN = ——~

[f®(x—ex+e)— f¥(x—ex—e)}

= (1= "N /% D))

This shows that T, f belongs to B(M,_.,) and to B(M), and hence to B(N).
Furthermore,

LN Dl < ITS* 00, < Al

and T,f — f pointwise as & | 0, so that, by dominated convergence, T, f — [ in
B(M) norm.

(3.3) Lemma. Let N be as above, and suppose that for some r and p the
polynomials are dense in B(I,r,p, M), B{I,r,p,N), and B(l,r,p, 0" *M,), for all
o > 1. Then they are dense in B{I,r,p, M) for all r and p.

Proof. Letl < p < p < p” < + . Then we have continuous inclusions
B(l,r.p,N) = Bll,r,p’, Ny = BI,r,1,N) = B(l,r, oc, M)
< Bll,r,p", M} < B(I,r,p, M).

By (3.2}, B{(l,r,p, N)is densein B(I,r, p, M); hence all terms of the chain are dense
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in B(I,r,p, M). Thus if the polynomials are dense in B{l,r,p,N) or in
B(I,r, p", M), then they are dense in B(I,r, p, M).
We also have the chain

B, r.p,a”*M,) = B, p,a”"M,) < B(I,1,p, M)
= B(I,r,p,M)c Bl,r,p, M),

valid wherever 1 < v <r <¢" € +o0. In view of (3.1), we conclude that if the
polynomials are dense in B(I,7",p,a™*M,} for all a« > 1, or are dense in
B{I.r, p, M), then they are dense in B(I, r, p, M). The result follows.

4. Proof of the main theorem

In this section we prove Theorem 2. In view of the results of §3, it suffices to
consider B(I, 1, oc, M) or B(f, oo, oo, M). Fix a closed bounded interval I.
First, we prove the analytic case, writing B(M) for B(I, 1, vo, M). Let

0 < u_ = Liminf (M k),
kT oo
limsup (M /) =y, < +oc,

kT

B=p.lu_.
1;“ix JSeB(M)and & > 1. Then f(x~!x) extends to an analytic function f, on the set
U=1{zeC:dist(z, ) < au3'}.
Now B({g* k!})is a Banach algebra, in which the spectrum of the function x r- x is
{zeC:dist(z, I) < pl'}.

By the functional calculus for Banach algebras, f, is a limit of polynomials in
B({#* k!}) norm. There exists A, > 0 such that k! < 4, uZ*M, for all k, and hence
k! < A, p*M,. Thus f,is a limit of polynomials in B({#*M,}} norm. Since f, — f
in B(M)}norm as « | 1, we are done.

Now consider the non-analytic case, that is, that where (3) holds and

lim (M, /k1)™ = + o .
k1

This time we use B{I, M) for B(I, oz, oo, M). Let N, denote the minimum of

M, M_,,...M,_, Let I = [~1,1]. By §3, it suffices to show that if « > 1 and

J € B([—a,a], N), then f is a limit of polynomials in B(I, M) norm. Since f*k!/M,

is bounded for each § > 0, and the analytic case is proved, it suffices to prove that f

is a limit in B(I, M) norm of functions analytic in a neighbourhcod of [ -1, 1].
Consider the {truncated) Poisson integral

X+

uix, y) = ff(s)Py(x—s)ds = J PEENIIOrS
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r,p,N) or in

where P(t) = l tl-|t- 5. Asy 1 0, the function x — u(x, y) tends pointwise to f on
I. Also, Y

" k=1 :

3—1: = Y N —a)P* I D)~ f)PYETITY (x—a)} 4+ Jf‘k’(s)Py(st)ds,
= B(I’re p,M}z ox =0 bt
lude that if the

are dense In P¥() =

e
EE i i,

Let | fll, denote, for the moment, |[fil,  _.a I xel—1,1], then
|x+x = a—1 = B, say, and hence

i3, it suffices to
arval I.
. Let

(k) —ip-k-1
|PP(xxa) < kln” 27570,

& u
ot o)

k-1
€20 Y NS PNlk—j= DIBTF 4 M.
=0

J

There exist A, > 0 and A, > 0, independent of k, such that

k!ﬁ_k = AZMk! Hf{k)“oo- = A3Nk = ASMk—-q'
Thus

k-1
S22 BT A Ay Y Mo M+ AM, .
=0

LoD ¥

Fu

ion f, on the set ax

By condition (3) and dominated convergence, uf{x, y) — f(x) in B(I, M) norm as

y 0.

netion x = x 1S This concludes the proof.

polynomials in
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