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ABSTRACT

We consider rational approximation in Lip § norm, for non-integral § > 1, by
functions analytic and rational on a neighbourhood of an arbitrary fixed compact set
in the plane. We distinguish three natural problems concerning approximation of this
type, and we solve two of them. We show further that for a compact set with no
interior, all lip 8 functions are approximable by rationals if and only if the set is a
subset of a finite disjoint union of lip § curves. We also consider approximation by
elements of function modules over the rationals, and by solutions of elliptic partial
differential equations.

This paper is about approximation in Lip f norm, for non-integral g > 1, by
functions analytic and rational on a neighbounrhood of an arbitrary fixed compact set
in the plane. We distinguish three natural problems concerning approximation of this
type, and we solve two of them. The main results on approximation are Theorems 1,
2, and 3. Besides standard methods of functional analysis, we use the Whitney
extension technique [16, Chapter VI], Geometric structure theory [4, section (3.5);
7], point derivations on Banach algebras [15, 7, 10, 12, 13], and the Cauchy transform,
in the spirit of [9, 10]. Theorem 1 has analogues for approximation by elements of
function modules over the rationals (Theorem 1°), and for approximation by solutions
of elliptic partial differential equations (Theorem 17).

1. Formulation of the problems

For0 < de Z and 0 < me Z, let C™(R?) denote the space of bounded continuous
complex-valued functions on R? with bounded continuous partial derivatives up to
order m. For 0 < o < 1, let Lip (¢, R?) denote the space of functions fe C°(R?) such
that there exists & > 0 with |f(x) - /()] < x |x ~ y|* for all points x ard y beloaging
to R%. Let lip (o, R?) denote the space of all those functions fe Lip (a, R?) such that,
given & > 0, there exists 8 > 0 such that | f(x) - f()| < ¢ |x - y|* whenever |x - y| < &.
Of course, lip (1, R?) contains only the constant functions. For f = m + a, with
0 <meZand0 < a < 1, let Lip (B, R?) (respectively, lip (8, R?)) denote the space of
functions in C™(R%) with all m-th order partial derivatives belonging to Lip (a, RY)

PROC. R.I.A., VOL. 79, SECT. A {11}




104 Proceedings of the Royal Irish Academy

(respectively, lip («, RY)). Let E(d, m) denote the set of multi-indices j = (jy, . . . ,jy)
with j, >0 and [jl =j, + ... +j; <m, and set j! = j,! j;!...j,. The partial
derivative corresponding to j we denote by D ;.

The spaces CO(R?), C™(R?), Lip (¢, R?), and Lip (8, R%) become Banach algebras
under pointwise multiplication, when endowed with the norms ‘
[flce = sup {{fx)] : xeR?,
Iflem = 2 GH7H[Dyf]lco
JeTWm
Ifle = lflco + least x,
s = Ve + 2 2,71

The space lip (B, RY is a closed subalgebra of Lip (8, R%) with respect to the norm
1*ls-

Let 2(R? denote the space of infinitely-differentiable complex-valued functions
onR? with compact support.

Let 0 < me Z, and let a € R% Then for any function y : 2(d, m) — C, the formula

Lf =UIZ; ijD;f(a) (fe CY(RY)

defines an element L of the dual C™(R%)*. Such an L we call an m-th order bounded
point differential operator at the point a.

Let X be a compact subset of R%, and define I(X) = {fe C°(R%) : f = 0 on X}
Thenr I(X) n C™(R?) is a closed ideal in C™(R?). For ae X we define J™X, a) as the
space of all m-th order point differential operators L at the point a, such that Lf = 0
whenever fe I(X) n C™(R*). We define the m-th order tangent bundle of X as

JH(X) = V{J"(X,a) :ae X}.

We identify C with R? in the usual way. For 0 < ne Z, we let 5,‘ denote the
(n + 1)-dimensional space of conjugate-analytic polynomials oy + ;2 + ... + 2"
on C. For compact X < C, we let Z(X) denote the algebra of all functions

fe n C™O)
m=1
such that there exists a rational function g with poles off X such that f =g on a

neighbourhood of X. The product #Z(X );’,, forms an %(X)-module. These modules
were studied in [9, 10].

We will use the abbreviations C™, Lip B, and lip 8 only for C™(C), Lip (8, C)
and lip (8, C), respectively.
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Let § > 0, let X be a compact subset of C, and let f € Lip . Consider the following
statements about 1.
(1) There exists a sequence of functions f, € (X) such that |- /,[, — 0.
(2) There exists a function g e I(X) nlip # and a sequence f, € Z(X) such that

N/ -g=sdls 0. ,

(3) There exists a sequence of functions f, € Z(X) + ({(X) ~ lip f) such that
I "f;l“ﬁ - 0.

Note that / must belong to lip f if (1) or (2) holds. Clearly, (1) implies (2), and (2)
implies (3). For k = 1, 2, 3, we use the expression, ““the k-th problem of Lip p rational
approximation”, to mean the problem of deciding for which pairs (X, f) statement (k)
is true. In case 0 < B < 1, the three problems are equivalent, and have been solved
completely [8). If B > 1, then the first and second problems are not equivalent, In
case f = 1, the second and third problems are equivalent; this follows from the
theorem of [13]. It is not clear whether or not the second and third problems have the
same solution in general. We cannot expect any progress on this question until we
understand more about the structure of compact subsets of RY, from the point of view
of local embeddings in C™ submanifolds, form > 2.

2. Selution of the first problem of Lip § rational approximation

Let 8 denote the differential operator 8/0x + i0/0y (= D(ys0y + i Digsy)) 0D
CY(C). The following theorem is a solution to the first problem, for nonintegral

B>1
Theorem 1. Le X be a compact subset of C. Let §=m + «, where | <melZ
and0Q < o < 1, Let fe lip B. Then the following statements are equivalent.
(A) There exists a sequence of functions f, € (X ) such that | f - f,|; = 0.
(B) The function F) f vanishes on X, together with all its partial derivatives up to
order m — 1, that is, Dj-éf: 0on X for|jl <m- 1.

We shall in fact prove the following more general theorem.

Theorem 1. Let X, B, m, o, and f be as above, and let 0 < r e Z with r < m. Then the
JSollowing statements are equivalent.

(A) There exists a sequence of functions f, € R(X)?, such that |[f - 1,||, - O.
(B) Dj(é)’“f= 0on X whenever |j| <m-r-1.

Proor. Clearly (4) implies (B). To prove the converse, suppose (8) holds, and let
T € (lip B)* be an annihilator of Z(X)Z,. We wish to show that Tf must vanish. This
will give the result, by the separation theorem.
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Fix, once and for all, a function € 2(C) such that y = | on a neighbourhood
of X. For functions g € lip o with compact support, we define the Cauchy transform
g by setting

1@, ,
g2 = ;J'Z_:—ng ()

whenever z € C. Here £ denotes Lebesgue measure on C. For the properties of this
operator, see [10]. The most important facts are that g e lip (I + «), and dg = g. We

define the operator C : lip « — lip (1 + «} by setting Cg = (/jg For cach nonnegative
integer n, the operator C maps lip (n + «) continuously into lip (n + 1 + a) [10,
p. 381, Lemma 6]. Thus the adjoint C* maps lip(n -+ 1 + «)* into lip (n + o)*.
For n 21 and gelip (n + o), with compact support, we have (5g)A = g. Taking
g = Yf; weobtainyf = [0QN)]" = (Wdf)" + (fow)* = Cof + (Féy)". Sincefy =0
on a neighbourheood of X, we have (fé?l//)A analytic on a neighbourhood of X, hence
by the general Runge theorem [10, p. 375, (fé-w)A is approximable in Lip # norm by
elements of Z(X). Thus T(féL//)A = 0. Also, f—yfe Z(X),soTf = TYf = TC éf:
(C*T) &f.

If Aelip{(f-1)and i = 0 on a neighbourhood of X, then (44)" is analytic on a
neighbourhood of X, hence (C*T)h = TCh = 0. Thus the support of C*Tis contained
nX.

If r = 0, we stop. Otherwise, suppose he Z(X )97,_1. Then yhe (X )?7,_1, sO
(C*TYh = T(yh)» = 0, by the Key Lemma of [10, p. 375). Thus C*T annihilates
R(X)Z,_,,and we may repeat the above procedure, to get

Tf = [C*C*T[05f].
Continuing, we get

Tf = [(CH  TH@Y V1,

where S = (C*)"*! T belongs to lip (8 - r - 1)*, and the support of Sis contained in X.
The result now follows from the next lemma.

Lemma 1. Let f=m+a 0<meZ 0<a<l, let X <=R* be compact, let
felip (B, RY), and suppose D;f(ay = O whenever l j ] <<mand ae X. Then there exists a
sequence f, € lip (B, RY) such that each f, vanishes on a neighbourhood of X, and

Ir=1ills = 0.

PROOF. Suppose f satisfies the hypotheses, and let ¢ > 0 be given. Then there exists a
neighbourhood ¥, of X such that |D; f(a)|] < & whenever ae ¥, and |j| < m. For each j
belonging to Z(d, m), the function F;, defined by

k| =m=1j] k!
Fi(x, y) = lx__y]m—mn  XFY
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is continuous on R? x RY, and vanishes on X x X; here (x — ) denotes the product
(xy =y ... (x4-yok, Hence there exists a closed neighbourhood ¥V, < V, of
X in B such that |Fy(x, )| < efor x and y belonging to ¥, and |j| < m. By the
Whitney-Calderdn-Zygmund extension theorem [16, Chapter VI] there exists a
function g € lip (8, R%) such that /= g on ¥, and |g||; < xe, where « is a certain
constant that depends only on f and d. Thus the function A = f— g vanishes on V,
and satisfies || /- h[|; < xe. The proofis complete.

It is well established by now that there is a close analogy between rational approxi-
mation and approximation by solutions of elliptic partial differential cquations on
RY{I, 2, 5, 6, 11, 14, 17]. Some parts of this analogy are not yet well understood, but
in many cases theorems go over routinely from one setting to the other. Theorem 1
falls in to the latter category and the analogous result is as follows.

Theorem 1”. Let X be a compact subset of R, let L(D) be a constani-coeficicnt
elliptic operator on R®, of order p =2, let p = m + o, where p <meZ, and § <
o < 1, and let e lip (B, RY). Then the following stateinents are equivalcit.

(A) There exists a sequence of functions f, € lip (8, R?) such that L(D)f, = 0 on a
neighbourhood of X and || f - f, | — 0.

(B) D,L(D)f = 0 on X whenever |j| < m - p.
ProoF. There exists a locally-integrable kernel K(x, y) such that, defining

(BNx) = | Kx.y) /() dy,
Rd

we have L{D)Pf = f = PL{D)f whenever f€ 2(R*). Moreover, the operator P maps
lip (y, RY) continuously into lip (p + y, RY) whenever 0 < y¢ Z [I1]. Using the
operator P in place of C"*!, the argument of Theorem 1’ is easily modified to
prove the present result.

Theorems 1, 1, and 1" also have analogues in the theory of approximation in the
Sobolev spaces W™P(C) and W™P(R?), for 1 <meZ and 1 < p < oo, where
W™P(RY) denotes the space of functions f in LP(R%) such that all partial derivatives
(in the sense of distributions) up to order m are represented by functions in LP(R?).
The statements of the analogues are obvious, and the proofs carry over because the
Calderdn-Zygmund estimates for the kernels also work in the context of W™ spaces
(indeed, it was for these spaces that Calderon and Zygmund first proved them [3]).

3. Solation of the second problem of Lip § rational approximation

Let X be a compact subset of C, let § = m + o, where 1 <me Z and 0 <
a < 1, and let felip B. In view of Theorem 1, we may formulate the second problem
as follows: Give conditions on the pair (X, f) that guarantee the existence of a function
f*elip fsuch that /* = f on X and D, of* = 0 on X whenever |j| < m-1. Thus the
second problem reduces to an extension problem.
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Suppose f * exists as above. Suppose ;
L= X o; Dya)

lilsm

belongs to the m-th order tangent bundle J"(X), where o; = a(L) e Canda = a(L)e X
Then Lf = Lf*. Moreover,

i1 glz ol

Djf*(a) = 5:;1—1 ayjz f*(d) = ("' i)jz ax]j|f*(a)’

m a" *
Lf* = f ﬁk aj;ck(a) s

k=0

where
By = B(L) = ‘flzk(—i)haj'

Thus, Lf depends only on a(L) and on the values at L of the functions f¢, By, . ..,
B J™(X) — C. This gives one necessary condition for the existence of f*. Further-
more, if we define G(a, B, - . ., f,) as Lf*, where Le J™X) has a, B¢, .. ., B @S
parameters, then G is defined on a certain subset of X x C"*!. For 0 < k < m,
define G, (a) as the value of G(a, B, - - . , B,n), when all the B, except f, are set equal to
0, and B, is set equal to 1, provided this value exists. Then Gy(a) is defined on all of X,
and G{a), for 1 < k < m, is defined on X, the set of accumulation points of X. These i
functions satisfy the following condition: *

@ | G5 Gr®a- )

e Rt
whenever 0 <k <m, ae X, be X', G(a) is defined, 6 > 0, and ]a—b] < . Here
(@ - b)Y denotes the r-th power of the complex number a— b, and &(8) is a positive
function of 8, that tends to zero as & tends to zero. This gives us a second necessary
condition for the existence of f*. The next theorem solves the second problem by
showing that these two conditions are sufficient.

Theorem 2. Let X be a compact subset of C,let f =m + 0,0 <me Z,0 <a <1,
and let f e lip (B, C) be given. Then the following conditions are equivalent.

(A) There exists a function f* e lip f such that [ = f* on X and Djéf* =0on X
whenever I]‘ <m-1.

(B) The function G:J™X)— C defined by GL = Lf depends only on a(L),
Bo(L), . . ., BulL), and the associated functions G (a) satisfy the condition (4) whenever
all the terms are defined.

Proor. We have already shown that (4) implies (B).

Conversely, suppose (B) holds. Choose a Whitney cowering [16, Chapter VI; 12]
of C ~ X’'bycubes @, (n = 1, 2, 3,...) with the side of Q, comparable to its distance
from X’, and with the property that no point belongs to more than 1007 of the Q,’s.
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Choose a partition of unity {¢}®; < 2(C) subordinate to {Q,}*, and choose points
p. € X' such that p, is at least as close to Q, as any other point of X’. Forae X ~ X',
and1 < k < m, define

(e '«GH,(pn)(a Py JL

e i =

Then G,(a) is defined on all of X for 0 < k <C m, and a routine check shows that, for
allé > 0,

Ga) =

IIMS

" "GH,(b)( by

m <£1(5) la__blm—ki-a

Gla) - Z

r=

whenever ae X, be X, and [a —b| < &, where ¢,(8) tends to zero as é tends to zero.
Thus, if we define
hia) = (i)“Gm(a)

for j e 2(2, m) and 4 € X, then we see that the collection {#;} satisfies the hypotheses of
the Whitney-Calderén-Zygmund extension theorem, hence there exists a function
S*elip B such that D;f* = h; on X, for je E(2, m). Hence, if 'jl <m-1land ae X,
we have

5f o>
D;3f*(a) = < @+ 1iD; B (@)
= h(fx + 1.]'2)(a) + ih(flJz + 1)(0)
= ((Y2Gyj+1(@) + i(D)*7' Gy 44(a)
= 0.
Thus (4) holds. This completes the proof.

It is reasonable to ask for a description of those compact sets X < C
with the property that all functions f € lip § may be approximated by rationals
on X, in the sense of the second problem. In view of Theorem 2, this amounts to
asking for a characterisation of those X such that, forall felip 8,

(i) Lfdependsonlyon(qa, Bo, - - ., B for Le J™(X), and
(ii) the associated functions Gy satisfy condition (4).

We shall provide a simple answer to this question in Theorem 3. First we need a
few lemmas. These lemmas are special cases of the meta-theorem that the inverse of a
function is as smooth as the function itself, except near critical points.

Lemma 2. Let A and B be compact subsets of C. Let f, be a homeomorphism of A
onto B, such that

k™! lal —a2| < Ifo(al) “fo(az)l <K Ial - az‘

for all pairs a;, a, of points of A, where the constant x does not depend on a, or a,.
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Let g, be the inverse of f. Let 0 < me Zand0 < o < 1. Suppose there exist continuous
tunctionsfy, ..., [ : A" — C, and a positive function £,(8) ¥ O such that

lfo(ax) _r—%o fr(az)(‘:x' - a,)

) < "11 - azlm“ sl(lal - azp

whenever a, € A,and a, € A’. Then there exist continuous functionsgy, ..., 8n : B = C
and a positive function €,(8) | 0, such that

m g(b,)(b, - b)Y
LCAR z§(—2)—(—,—,—~—9~ | < b1 = ba]"* ex((by — o)

whenever b, € Band b, € B’.

Proor. The case m = 0 is trivial, so we suppose now that m is at least 1. Choose
M > 0 such that |fi(@)] < M for 0 <k <m and ae A'. For ae A', consider the
polynomial

ap = 5 E 0

Wehave|fi(a)] = «71, s0

m M
lpta, ) -fita)t| < % k',q

< Ml < k7 ) < fa]

provided |{| < R = min {log 2, 1/2M}. Thus, by Rouché’s theorem, p(a, {) is an
invertible analytic function on the disc ]C[ < R.Forl < re Z, we define the functions
g, . B’ - C by requiring that the identity

. r

(= % g'(b){ 5 fk<go(b>)c"}

Pl T

r=1

hold for all be B’ and all { with [¢{| < R. This identity yields recursion relations for
the g,(b), in terms of the fi(g,(b)). The first few relations are:

1 =g/

0=gifo +8fi%

0=2g1fs + 2001 + 8/

0= g.fy + &2+ 281113 + 36:/1%2 + gai*.

The n-th relation is:
0=g.f, +22 2 fifiht oo+ ) fjl...f,k+...+g,,f1"

Jitjz=n Jitesetjk=n
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where f, = 0, for k > m. Thus gb) is a rational function of f(a), . ., f(a) (where
a = go(h)), in which the denominator may be taken as a power of fx Thus, all the
g, are continuous on B’, since /3, . . . , f,, are continuous on A’, and |f;] is bounded

below In particular, the functions g,,..., &, are continuous. Furthermore, if
= fo(a,) and b, = foa,), with a, € A and a, € 4’, then for small |b, ~ b,| we have

g(bx) -glby)= a; —a,

2 b)) {7 Sa)a - az)k}r
~r=1 r! k:l k!
s (2) +a
==): fla)) -flay) + |a, - a,|" o(la, - azl)

{L:’ 8(b)(by - b)Y

1 y + la; - ay|"** o(]a, - a,))
o !

&(bo)(by — By)
1 r!

+ by - by o(|by - b2)).

This proves the lemma.

Lemma 3. Let 4, B, f,, g,, m, o, and £,(9) be as in Lemma 2. Suppose that in addition
the f, satisfy the condition:

m—k frida)(a - a)

=0 r!

fk(al)"

< ]al - az‘m_kh Ex(lfh - aZDa

whenever 1 <<k <m, a, € A’, and a, € A'. Then the functions g, satisfy the corre-
sponding condition:

L (b:)(by - by)

r=0 rt

¢~ 2

< |b1 “bzlm_k+a 53(|b1 ‘bzl),

whenever | <k <m,b, € B',andb, € B'.

ProOF. We note that g (b) = h®(b, b) (i.c., the k-th derivative with respect to @
of h(b, w), evaluated at w = b), where h(h, w) is the inverse function of p(ge(é), )
with A(b, 0) = 0. Thus, for b, and b, belonging to B’, we have

"ok gk+,(bz)(b1 =by)

r=

h( )(bZ’ 1) -

m (k+r) -
O S I XL boy|

r=0 r! l

< M1 Ibl _b21m—k+1
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for a suitable constant M, = M, (k, M, diam B). Thus it suffices to prove that
[K®(by, by) = Kby, b))| < [by = by|™ ™ %e4(|by - b2)),

for some g,(8) | 0. Let a; = go(b;), for j = 1, 2. Then h®(b,, b,)/k! is the k-th
coeflicient in the inverse series of

!

~

= X
- 1

1 n! n

{ "E"fnh(az)(al -a) } z"

r=0 r!

Also, i®(b,, b,)/k!is the k-th coefficient in the inverse series of

Thus #%(b,, b,) is a certain rational function of the numbers

”'2_:" Juarl@)a, —ay) (

r=0 r!

n=12...,k

and A%(b,, b,) is the same rational function of the numbers f,(a,) (n = 1,2, ..., k).
In view of the hypothesis, we deduce that

]h(k)(bz: b)) - (b, b;)l < [01‘ azlm~k+a55(lax - az]) < lbl - bz{m_k“%(lbl - bzl)s

and the result follows.

Theorem 3. Let X be a compact subset of C, and let f=m + o, 1 <mel,
0 < o < 1. Then the following are equivalent.

(A) Foreachfelip pand L € J™(X), the value of

lilsm
depends only on f, a, and the parameters fy, . . ., B, where
ﬁk = X (" 1)12 aj.
lil=k&

Moreover, the associated functions G, (a) satisfy the condition (4).

(B) X is a subset of a finite union of pairwise-disjoint simple lip B curves.

Here, the expression “simple lip f curve” means the image of either the unit
interval or the unit circle under a lip § diffeomorphism.
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Proor. Itis clear that (B) implies (A).

Conversely suppose (A) holds. Fix a € X. The argument in the proof of Theorem
A of [7] shows that there exists a closed disc U about a in € and an orthogonal pro-
jection n(x, y) = Ax + uy of C = R? — R such that the restriction of mto X N Uisin-
vertible with Lip 1 inverse. Let ¥ denote n{X N U), and let Fy : ¥ — X n U be the

inverse of x.

We claim that there exist continuous functions F,...., F, mapping ¥ - C
such that

m=i F — r
p "5 P2

r=0

p < |- ufmm (|t - u))

whenever0 <<k <m, te Y,ue Y’ and F,(¢) exists, where e(8) { Oasd ! 0.

Given this, the Whitney-Calderén-Zygmund extension theorem implies that F has
anextension F* € lip (,R), and it is easy to show that £* may be modified, if necessary,
to ensure that dF*/df -~ 0. Thus X n Uis a subset of a lip 8 arc. So each point g of X
has a neighbourhood U such that X n U is a subset of a lip # arc. This implies (B),
as may be seen by imitating the argument of [7, pp. 162-163].

To prove the claim, first note that it is equivalent to the existence of functions
H,,...,H,onX" n Usuch that

HQ) - o k+r(w)(.7:‘(!z) - a(w))

r=0

<z - w[" " %]z - w))

for ze XN U, weX' n U, 0 <k <<m, with H(z) defined, where Hy(z) = z and
() | 0 as & | 0. Next, note that the function f = = belongs to lip 8, so that, by (4),
the associated functions G, satisfy condition (4). It is now clear that Lemmas 2 and 3
apply, with f, replaced by G,, and that these lemmas yield the desired functions H,

It is worth noting that, in condition (4), the validity of the estimate for even k.
0 <k < m, implies its validity for odd k, 0 < k << m. This is proved by routine,
calculation.
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